skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palermo, Edmund F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 30, 2026
  2. Abstract Objective.Curcumin is an antioxidant and anti-inflammatory molecule that may provide neuroprotection following central nervous system injury. However, curcumin is hydrophobic, limiting its ability to be loaded and then released from biomaterials for neural applications. We previously developed polymers containing curcumin, and these polymers may be applied to neuronal devices or to neural injury to promote neuroprotection. Thus, our objective was to evaluate two curcumin polymers as potential neuroprotective materials for neural applications.Approach.For each curcumin polymer, we created three polymer solutions by varying the weight percentage of curcumin polymer in solvent. These solutions were subsequently coated onto glass coverslips, and the thickness of the polymer was assessed using profilometry. Polymer degradation and dissolution was assessed using brightfield microscopy, scanning electron microscopy, and gel permeation chromatography. The ability of the polymers to protect cortical neurons from free radical insult was assessed using anin vitrocortical culture model.Main results.The P50 curcumin polymer (containing greater poly(ethylene glycol) content than the P75 polymer), eroded readily in solution, with erosion dependent on the weight percentage of polymer in solvent. Unlike the P50 polymer, the P75 polymer did not undergo erosion. Since the P50 polymer underwent erosion, we expected that the P50 polymer would more readily protect cortical neurons from free radical insult. Unexpectedly, even though P75 films did not erode, P75 polymers protected neurons from free radical insult, suggesting that erosion is not necessary for these polymers to enable neuroprotection.Significance.This study is significant as it provides a framework to evaluate polymers for future neural applications. Additionally, we observed that some curcumin polymers do not require dissolution to enable neuroprotection. Future work will assess the ability of these materials to enable neuroprotection withinin vivomodels of neural injury. 
    more » « less
    Free, publicly-accessible full text available January 27, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Chiral semiconductors have been recently suggested as the basic building blocks for the design of chiral optoelectronic and electronic devices for chiral emission and spintronics. Herein, we report that through the formation of a chiral/achiral heterostructure, one can develop a chiral system that integrates the merits of both chiral and achiral components for developing a demanded chiral emitter. In the R-(+)-(or S-(−)-)1-(1-naphthyl)-ethylammonium lead bromide/CsPbBr3 heterostructure, we show that the photoluminescence of CsPbBr3 carries a degree of circular polarization of around 1% at room temperature. It is explained that such chiral emission is enabled through the chiral self-trapped exitonic absorption of R-(+)- (or S-(−)-)1-(1-naphthyl)-ethylammonium lead bromide. This work may provide an alternative way to generate bright circularly polarized light from achiral materials, which has potential applications in spintronics, biosensing, and signal encryption. 
    more » « less
  5. Melissa Grunlan (Ed.)
    The performance of antimicrobial polymers depends sensitively on the type of cationic species, charge density, and spatial arrangement of cations. Here we report antimicrobial polymers bearing unusually bulky tetraaminophosphonium groups as the source of highly delocalized cationic charge. The bulky cations drastically enhanced the biocidal activity of amphiphilic polymers, leading to remarkably potent activity in the submicromolar range. The cationic polynorbornenes with pendent tetraaminophosphonium groups killed over 98% E. coli at a concentration of 0.1 μg/mL and caused a 4-log reduction of E. coli within 2 h at a concentration of 2 μg/mL, showing very rapid and potent bactericidal activity. The polymers are also highly hemolytic at similar concentrations, indicating a biocidal activity profile. Polymers of a similar chemical structure but with more flexible backbones were made to examine the effects of the flexibility of polymer chains on their activity, which turned out to be marginal. We also explore variants with different spacer arm groups separating the cations from the backbone main chain. The antibacterial activity was comparably potent in all cases, but the polymers with shorter spacer arm groups showed more rapid bactericidal kinetics. Interestingly, pronounced counterion effects were observed. Tightly bound PF6– counteranions showed poor activity at high concentrations due to gross aggregate formation and precipitation from the assay media, whereas loosely bound Cl– counterions resulted in very potent activity that monotonically increased with increasing concentration. In this paper, we reveal that bulky phosphonium cations are associated with markedly enhanced biocidal activity, which provides an innovative strategy to develop more effective self-disinfecting materials. 
    more » « less
  6. Cationic and amphiphilic polymers are known to exert broad-spectrum antibacterial activity by a putative mechanism of membrane disruption. Typically, nonspecific binding to hydrophobic components of the complex biological milieu, such as globular proteins, is considered a deterrent to the successful application of such polymers. To evaluate the extent to which serum deactivates antibacterial polymethacrylates, we compared their minimum inhibitory concentrations in the presence and absence of fetal bovine serum. Surprisingly, we discovered that the addition of fetal bovine serum (FBS) to the assay media in fact enhances the antimicrobial activity of polymers against Gram-positive bacteria S. aureus, whereas the opposite is the case for Gram-negative E. coli. Here, we present these unexpected trends and develop a hypothesis to potentially explain this unusual phenomenon. 
    more » « less
  7. We report the synthesis of cationic dendrons (1 st and 2 nd generations) with pendant alkyl chains of varying lengths (C 8 , C 12 , C 14 ), which are classified as cationic molecular umbrellas. In each case, the dendron surface moieties were functionalized with guanidine groups, which are fully protonated in aqueous media of pH 7.4, lending cationic character to the solute. We found that these compounds are potent membrane-disrupting antibacterial agents with dose-dependent hemolytic activities. Confocal microscopy confirmed the permeabilization of E. coli and S. aureus cell membranes. A pyrene emission assay confirms that the dendrons are unimolecularly solvated at the concentrations relevant to their antibacterial activity, although they do aggregate at higher concentrations in aqueous buffer. Most importantly, when we compare the activity of these guanidinium-functionalized umbrellas to our previously published data on ammonium-functionalized analogues, we found no significant benefits to guanidinium relative to the ammoniums. The antibacterial activities are similar in all cases tested, and the highest selectivity index was found in the ammonium series, which stands in contrast to many other classes of antibacterial agents for which guanidinylation is typically associated with enhanced activity and selectivity. 
    more » « less
  8. null (Ed.)